Home » leet code » Leet Code : Maximum Score from Performing Multiplication Operations Cpp | Java | Python solution

Leet Code : Maximum Score from Performing Multiplication Operations Cpp | Java | Python solution

Two integer arrays, nums and multipliers, of sizes n and m, respectively, are provided to you, where n >= m. The arrays are all one-dimensional.

You start with a score of zero. You need to carry out precisely m operations. On the ith (1-indexed) action, you will:

Choose one integer x from the beginning or end of the array nums.

Increase your score by multipliers[i] * x.

Take x out of the array nums.

After doing m operations, return the highest possible score.

Example 1:

Input: nums = [1,2,3], multipliers = [3,2,1]
Output: 14
Explanation: An optimal solution is as follows:
- Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score.
- Choose from the end, [1,2], adding 2 * 2 = 4 to the score.
- Choose from the end, [1], adding 1 * 1 = 1 to the score.
The total score is 9 + 4 + 1 = 14.

Example 2:

Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6]
Output: 102
Explanation: An optimal solution is as follows:
- Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score.
- Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score.
- Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score.
- Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score.
- Choose from the end, [-2,7], adding 7 * 6 = 42 to the score. 
The total score is 50 + 15 - 9 + 4 + 42 = 102.

Solution :

Python :

DP solution :

 dp = [0] * (len(mul) + 1)
        for m in range(len(mul) - 1, -1, -1):
            pd = [0] * (m + 1)
            for l in range(m, -1, -1):
                pd[l] = max(dp[l + 1] + mul[m] * nums[l], 
                            dp[l] + mul[m] * nums[~(m - l)])
            dp = pd
        return dp[0]

CPP

DP Solution :

  • Instead of initializing DP by 0, initialize it by INT_MIN.
  • Why ? Because 0 is a valid score.
  • As 0 is a valid score, when the dp[j][i] is indeed 0, we will recompute the value and thus waste time. We can initialize dp[j][i] to INT_MIN instead.
class Solution {
public:
    vector<vector<int>> dp;
    
    int solve(int i, int n, int j, vector<int> &nums, vector<int> &M){
        
        if (j == M.size()) return 0;
        if (dp[i][j] != INT_MIN) return dp[i][j];
        
        // Left Side
        int left = solve(i + 1, n, j + 1, nums, M) + (nums[i] * M[j]);
        
        // Right Side
        int right = solve(i, n, j + 1, nums, M) + (nums[(n - 1) - (j - i)] * M[j]);
        
        return dp[i][j] = max(left, right);
    }
    
    int maximumScore(vector<int>& nums, vector<int>& M) {   
        int n = nums.size(), m = M.size();
        dp.resize(m + 1, vector<int>(m + 1, INT_MIN));
        return solve(0, n, 0, nums, M);
    }
};

Java

class Solution {
    int N, M;
    public int maximumScore(int[] nums, int[] multipliers) {
        N = nums.length;
        M = multipliers.length;
	    return helper(nums, multipliers, 0, 0, new Integer[M][M]);
    }

    private int helper(int[] nums, int[] multipliers, int left, int index, Integer[][] dp) {
	    int right = N - 1 - (index - left);
	    if (index == M) return 0;

	    if (dp[left][index] != null) return dp[left][index];

	    int res = Math.max(
            nums[left] * multipliers[index] + helper(nums, multipliers, left+1, index+1, dp), 
            nums[right] * multipliers[index] + helper(nums, multipliers, left, index+1, dp));

        dp[left][index] = res;
	    return res;
    }
}

Leave a Comment

Your email address will not be published. Required fields are marked *